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R(e) or R(p). We can write R(e) and R(p) in this basis as

R(e) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟
⎠

and R(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 . . .
0 1 0 0 . . .
. . .
. . . . . . −1 0 0
. . . . . . 0 −1 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where in R(p) the rows/columns with +1 correspond to even basis states and the rows/columns
with -1 correspond to the odd basis states. That is, we have

R(g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R1(g) 0 0 0 . . .
0 R1(g) 0 0 . . .
. . .
0 0 R2(g) 0 . . .
0 0 0 R2(g) . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (9.46)

Applying the Schur lemmas, and noting that R1(g) and R2(g) are non-equivalent irreps, we now
obtain that

H = (H11 0
0 H22

) . (9.47)

It follows that the eigenfunctions of a Hamiltonian that commutes with the parity operator are
either odd or even. That is, they have well defined parity. You of course already knew this -
but hopefully it is nice to see that this can arise from your new found understanding of irreps.

Example 3: Bloch’s Theorem. Let’s now consider the case of a particle moving in 1D in a
periodic potential V (x). That is under the Hamiltonian

H = p2

2m
+ V (x) where V (x + a) = V (x) . (9.48)

We will suppose that the particle moves on a 1-dimensional lattice consisting of N sites and
periodic boundary conditions.

What is the symmetry in group in this case? Well the Hamiltonian is left unchanged by any
translation Ua by a distance a, i.e., x→ Ux = x+a. It follows, that the symmetry group consists
of {I,Ua, U2

a ,⋯, UN−1
a }. Note that given the periodic boundary conditions we have that UNa = I.

Thus the symmetry group is just the familiar cyclic group ZN . In the problem sheet, you’ll then
use your understanding of the irreps of ZN to determine the form of the eigenfunctions of H.

9.7 How many irreducible representations does a group have?
Let us start by presenting two theorems that can be used to deduce the number of irreps that
a group has.

Lemme 9.7.1. Burnside lemma: For a finite group of order h, there are only a finite number
n of irreducible representations a = 1, . . . , n of dimension la, and

n

∑
a=1

l2a = h (9.49)
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For example, the group Z2 is order 2 (i.e. contains two elements). It’s irreducible representations
are the trivial representation, e → 1 and a → 1, and the sign representation, e → 1 and a →
−1. And this satisfies the Burnside lemma as 12 + 12 = 2. (For a proof of this Theorem see
Appendix 9.14).

Lemme 9.7.2. Number of Irreducible Representations: For a finite group of order h, the number
of (non-equivalent) irreps is equal to the number of conjugacy classes:

Nr = Nc . (9.50)

To understand this second theorem, which we will prove in Section 9.8, we will need to introduce
the concept of a conjugacy class.

9.7.1 Equivalence relations and conjugacy classes.

I thought equivalence/conjugacy classes were really nicely explained in ‘group theory in a nut
shell for physicists’ so I’m going to quote directly from there here:

“Given a group G, distinct group elements are of course not the same, but there is a sense that
some group elements might be essentially the same. The notion of equivalence class makes this
hunch precise.

Before giving a formal definition, let me provide some intuitive feel for what “essentially the
same” might mean. Consider SO(3). We feel that a rotation through 17○ and a rotation
through 71○ are in no way essentially the same, but that, in contrast, a rotation through 17○
around the z-axis and a rotation through 17○ around the x-axis are essentially the same. We
could simply call the x-axis the z-axis.

As another example, consider S3. We feel that the elements (123) and (132) are equivalent,
since they offer essentially the same deal; again, we simply interchange the names of object 2
and object 3. We could translate the words into equations as follows:

(23)−1(123)(23) = (32)(12)(23)(32) = (32)(21) = (321) = (132) (9.51)
A transformation using (23) has turned (123) and (132) into each other, as expected. Similarly,
you would think that (12), (23), and (31) are essentially the same, but that they are in no way
essentially the same as (123).

In a group G, two elements g and g′ are said to be equivalent (g ∼ g′) if there exists another
element f such that

g′ = f−1gf

The transformation g → g′ is like a similarity transformation in linear algebra.”

Thus the equivalence relation divides the elements of group G into distinct classes which are
called conjugate classes or simply classes.

Let us consider for example the order 4 cyclic group:

G =

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

(9.52)
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Figure 9.5: Graph of an example equivalence with 7 classes (from Wiki page on equivalence
classes).) Each edge represents ∼ (with edges from any node to itself not shown).

In this case, can check that we have four conjugacy classes, each containing one member. (But,
for example, {a, b} is not an equivalence class because there is no u ∈ {a, b} such that uau−1 = b.)

In fact, this is true for each Abelian group (and the converse is true). An Abelian group of order
n has n conjugacy classes. This is a trivial consequence of commutation (i.e. uau−1 = uu−1a =
a = b)! Looking back at Lemma 9.7.2 this then implies that an order n Abelian group has n
irreps (irreducible representations). (Note, you could also have seen this from the fact that the
irreps of Abelian groups are 1D and the Burnside Lemma).

A more interesting example is given by the S3 (i.e., the C3v group). Here we have three conju-
gacy classes: {e},{c+ = (123), c− = (132)}, and the three mirrors {σ = (12), σ′ = (23), σ′′ = (32)}.
Note that e is always a "isolated" class in itself. Indeed, if x = u−1eu then x = e. We then already
showed that (123) and (132) were equivalent in Eq. (9.51). I’ll leave it as an exercise for you
to convince yourself that σ = (12), σ′ = (23), σ′′ = (32) are equivalent. (If you’re stuck check out
this video). Looking back at Lemma 9.7.2 this tells us that C3v has 3 irreps.

So we now have a way of counting how many irreps we have. This can be useful because if we
are trying to find all irreducible representations of a group because it gives us a way of knowing
how many we are missing. Then Burnside’s Lemma gives us a way of guessing the dimensions of
the missing representations. But this is only so useful. Really we want to know how to identify
some of the irreps.
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9.8 Orthogonality theorems

We have just seen that if we know a systems irreps we can use them to block diagonalize a
Hamiltonian. But we still don’t have all the theoretical tools we need to identify irreps in the
first place. We will set some of these out in this subsection.

9.8.1 Grand Orthogonality Theorem

We are now in a position to state the grand orthogonality theorem. Similarly to how the
orthogonality of eigenstates of a Hermitian operator allows you to find a single eigenstate and
then identify other eigenstates by construction, we will see that this theorem allows us to take
one irrep and identify others by this orthogonality constraint.

We can think of irreducible representations as giving "vectors of matrices" ([R(g)]ij)g∈G in
a vector space of dimension ∣G∣. The Grand Orthogonality Theorem provides orthogonality
relations between these vectors. Let me start by stating the theorem in its full glory:

Theorem 9.8.1 (Grand Orthogonality Theorem). Let Ra and Rb be two non-equivalent unitary
irreducible representations of a finite19 group G of order N . Let na and nb be the dimensions of
the vector space for Ra and Rb. Then the grand orthogonality theorem states that

∑
g∈G

na
N
[Ra(g)†]jk [Rb(g)]lm = δabδjmδlk (9.53)

The grand orthogonality theorem is a consequence of Schur’s lemma, for a derivation see Ap-
pendix 9.13.

Now let me try and unpick it a little for you. Let’s first consider the case of two non-equivalent
irreps (i.e, a ≠ b). Then the grand orthogonality theorem implies that the vectors of matrices
corresponding to any two non-equivalent irreps are orthogonal20. In particular, we have

∑
g∈G

[Ra(g)†]jk [Rb(g)]lm = 0, ∀ a ≠ b ,∀i, j, k, l . (9.54)

Next let’s consider the case where a = b so that we’re just looking at the properties of a single
irrep. In this case we firstly have an orthogonality relation between the elements of the irreps

∑
g∈G

[Ra(g)†]jk [Ra(g)]lm = 0 if j ≠m and/or l ≠ k . (9.55)

Finally, the grand orthogonality theorem provides a normalisation condition for these vectors in
the case where j =m and l = k. Concretely, we have

∑
g∈G

[Ra(g)∗]kj [Ra(g)]kj =
N

na
. (9.56)

where N is the order of group G and na is the dimension of the vector space of representation
Ra.

19The theorem can also be generalized to compact Lie groups.
20Note, that in fact the condition the Grand Orthogonality Theorem imposes is stronger than simply the

orthogonality of these vectors. That would be the claim that ∑g Ra(g)†Rb(g) = 0 which is equivalent to
∑g∑j[Ra(g)†]ij[Rb(g)]jk = 0 for all i and k. This is implied by Eq.(9.54) but Eq.(9.54) is stronger.
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Examples. As ever, let us try and make this a little less abstract by considering some exam-
ples. Let us start with the Z2 group. It is Abelian so its irreps are one-dimensional. Specifically,
we have:

R1(e) = 1,R1(a) = 1 (9.57)
R2(e) = 1,R2(a) = −1 . (9.58)

As these are one-dimensional irreps we can drop the subscripts j, k, l,m in Eq. (9.54) and have:

∑
g

R1(g)†R2(g) = R1(e)†R2(e) +R1(a)†R2(a) = 1 × 1 + 1 × (−1) = 0 (9.59)

in agreement with Eq. (9.54). Similarly,

∑
g

R1(g)†R1(g) = 1 × 1 + 1 × 1 = 2

∑
g

R2(g)†R2(g) = 1 × 1 + −1 × (−1) = 2 .
(9.60)

As the order of the group is 2 (N = 2) and the dimension of the irreps are 1 (nA = 1) this agrees
with Eq. (9.56).

As a less trivial example, let’s consider C3v. Remember, this consisting of two rotations (clock-
wise and anti-clockwise) and three reflections (on each axis). A possible irreducible representa-
tion 21 are the following six real matrices:

e = (1 0
0 1)

c+ =
⎛
⎝
−1

2 −
√

3
2√

3
2 −1

2

⎞
⎠
, c− =

⎛
⎝
−1

2

√
3

2
−
√

3
2 −1

2

⎞
⎠

σ = (−1 0
0 1) , σ

′ =
⎛
⎝

1
2

√
3

2√
3

2 −1
2

⎞
⎠
, σ′′ =

⎛
⎝

1
2 −

√
3

2
−
√

3
2 −1

2

⎞
⎠

(9.61)

Let us consider an example of the normalisation condition first:

∑
g∈G

R†(g)11R(g)11 = 12 + 12 + (−1
2
)

2
+ (−1

2
)

2
+ (−1

2
)

2
+ (−1

2
)

2
= 3 = 6

2
.

which satisfies Eq. (9.56) as the order of the group is 6 (N = 6) and the dimension of the irrep
is 2 (nA = 2). Now let’s demonstrate the orthogonality of the (1,1) and (2,2) elements:

∑
g∈G

R(g)†11R(g)22 = 12 + (1)(−1) + (−1
2
) 1

2
+ (−1

2
)(−1

2
) + (−1

2
)(−1

2
) + (−1

2
) 1

2
= 0.

It is straightforward to verify the orthogonality of the other elements.

A direct consequence of the grand orthogonality theorem is that

Proposition 9.8.2. A finite group can only have a finite number of inequivalent irreducible
representations. Specifically, the maximum number of possible irreps is given by the order of the
group.

21We will discuss how to check that this is indeed an irrep and discuss other irreps of C3v in Section 9.9.1
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This is clear from the orthogonality theorem. Thinking of irreducible representations as giving
"vectors of matrices" ([R(g)]ij)g∈G in a vector space of dimension ∣G∣, the theorem tells us that
those vectors must be orthogonal. But there are at most ∣G∣ orthogonal vectors in a vector space
of dimension ∣G∣, and so the number of irreducible representations must be finite. In fact, we
will calculate the number of irreducible representations for any finite group explicitly when we
introduce characters.

9.8.2 Group averaging (twirling)

You may have noticed that the grand orthogonality theorem looks a lot like an average of an
object under the adjoint action of the group. To see this consider the quantity:

⟨X⟩G ∶=
1
N
∑
g

R(g)XR(g)† . (9.62)

For example, if R(g) = Ug is a unitary representation then this is just the average output of X
after being evolved by each unitary Ug in the group,

⟨X⟩G ∶=
1
N
∑
g

UgXU
†
g . (9.63)

If this representation is irreducible then we can apply the grand orthogonality theorem to get
the following Irrep Group Averaging Corollary:

⟨X⟩G =
1
N
∑
jklm

∑
g

[R(g)]lmXmj[R(g)†]jk∣l⟩⟨k∣

= 1
d
∑
jklm

δlkδjmXmj ∣l⟩⟨k∣

= 1
d
∑
jk

Xjj ∣k⟩⟨k∣

= 1
d

Tr[X] I

(9.64)

where na = d is the dimension of the vector space of the representation.

Let’s consider the group average of the single qubit Pauli groupG = {±(i)σx,±(i)σy,±(i)σz,±(i)I}
over an arbitrary single qubit initial state ρ. This is an irreducible representation onto a d = 2
vector space and so from Eq. (9.64) we should have

⟨ρ⟩G =
I

2
. (9.65)

That is, averaging the effect of applying each of the Paulis on a given state gives a maximally
mixed state.

If it helps to make this less abstract and mysterious we can also compute ⟨ρ⟩G explicitly. To
do so we first note that in each term of the form UgρU

†
g the +1, -1, +i, −i signs cancel out, i.e.

(iσz)ρ(−iσz) = σzρσz, and so we can write

⟨ρ⟩G =
1
4
(σxρσx + σyρσy + σzρσz + IρI) . (9.66)
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If we write the state in terms of its Bloch vector, ρ = 1
2(I +r.σ) and remember the properties of

Pauli matrices (e.g. σiσjσi = −σj for i ≠ j but σ3
j = σj) then we have

⟨ρ⟩G =
1
2
⎛
⎜
⎝
I + 1

4
⎛
⎜
⎝

⎛
⎜
⎝

rx
−ry
−rz

⎞
⎟
⎠
+
⎛
⎜
⎝

−rx
ry
−rz

⎞
⎟
⎠
+
⎛
⎜
⎝

−rx
−ry
rz

⎞
⎟
⎠
+
⎛
⎜
⎝

rx
ry
rz

⎞
⎟
⎠

⎞
⎟
⎠
.σ
⎞
⎟
⎠
= 1

2
I , (9.67)

in agreement with Eq. (9.65)

All this discussion of orthogonality theorems so far (i.e., both the grand orthogonality theorem
and the group averaging corollary) has been framed for finite groups; however, it also carries over
to compact (i.e. closed and bounded) Lie groups. And all the continuous groups we normally
care about U(n), SU(n), O(n), SO(n) etc are compact. In this case the finite average sum 1

N ∑g
becomes a continuous integral over a uniform measure ∫ dµ(g). This uniform measure is called
the Haar measure and the average is called Haar averaging - it’s exact form and properties are
beyond this course but I highly recommend this blog or this review. In any case, for continuous
groups the average over irreducible representations is given by:

⟨X⟩G ∶= ∫
G
dµ(g)Ux(g)XUx(g)† =

1
d

Tr[X] I . (9.68)

The operator ∫G dµ(g)Ux(g)...Ux(g)† is sometimes called the twirling operation22.

For example, if you apply random unitaries to a single qubit state and then average the states
you get out you will end up with the maximally mixed state. Note you effectively saw this in the
decoherence problem sheet - but then I was nice and made the calculation simpler and had you
just average over a mix of rotations around the σz and σx axes rather than arbitrary unitaries.

If you think back to the decoherence problem sheet you’ll remember that if you only averaged
over Rz(θ) = e−iθσz rotations then you ended up not at the maximally mixed state but on
projecting the state onto the Z axis. How can we understand this?

The first thing to note is that we cannot directly apply Eq. (9.68) because that only holds for
irreps and Rz(θ) = e−iθσz is not an irrep. To see this note that here we are considering U(1)
which is an Abelian group and so all its irreps are 1D. So we need a generalization of Eq. (9.68)
for reducible representations.

Any reducible unitary representation can be written in the form

U(g) =⊕
x
Ux(g) . (9.69)

Let us consider a basis Bx = {∣x, i⟩}dx
i=1 for each subspace x of dimension dx. Therefore, ⋃xBx is

a basis for the full space (i.e. on which U(g) acts) and we have

U(g) =⊕
x
Ux(g) = ∑

x

dx

∑
i,j=1
(Ux(g))i,j ∣x, i⟩⟨x, j∣ , (9.70)

where (Ux(g))i,j is the component (i, j) of Ux(g) with respect to the elements of Bx i.e.
(Ux(g))i,j = ⟨x, i∣U(g) ∣x, j⟩. Let us repeat the calculation in Eq. (9.64) but this consider a

22In a quantum information context it is such standard terminology that I thought everyone called it this.
However, apparently not... which lead to a few awkward conversations before I realised this.
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reducible representation written as in Eq. (9.70). Again we’ll do this calculation for a finite
group but it generalises to continuous groups. Thus if we use the grand orthogonality theorem
to repeat the calculation in Eq. (9.64) we find:

⟨X⟩G =
1
N
∑
g

U(g)XU(g)†

= 1
N
∑
g
∑
xx′

dx

∑
i,j=1

dx′
∑
k,l=1
(Ux(g))i,j⟨x, j∣X ∣x′, k⟩(Ux′(g)†)k,l∣x, i⟩⟨x′, l∣

= ∑
xx′

dx

∑
i,j=1

dx′
∑
k,l=1
⟨x, j∣X ∣x′, k⟩∣x, i⟩⟨x′, l∣ 1

N
∑
g

(Ux′(g)†)k,l(Ux(g))i,j
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=
δxx′δilδjk

dx′

= ∑
x

1
dx

dx

∑
i,j=1
⟨x, j∣X ∣x, j⟩∣x, i⟩⟨x, i∣

= ∑
x

1
dx

dx

∑
j=1
⟨x, j∣X ∣x, j⟩Πx

= ∑
x

Tr[ΠxX]
dx

Πx

=⊕
x

Tr[ΠxX]
dx

Ix ,

(9.71)

where Πx is the projector onto subspace x and Ix is the identity in this subspace (dim(Ix) = dx
and dim(Πx) = dim(X)). The grand orthogonality theorem is used in the fourth equality, we
perform the sum over i in the fifth inequality by introducing Πx, then we recognise a trace over
the projection on X onto subspace x (i.e. Tr[ΠxXΠx] = Tr[ΠxX] by cyclicity of the trace and
as Π2

x = Πx for projector). (As a sanity check note that if we are actually looking at an irrep
then we have Πx = I and Trx = Tr and so Eq. (9.71) reduces to Eq. (9.64)). Again, while I have
worked through this calculation for a finite group it also carries over to averaging over all the
standard continuous groups we are interested in.

Ok so what happens when we average a state ρ by Rz(θ) = e−iθσz ? Well the relevant group here
is U(1) and so the irreps in this case are both 1D ({1} and {e−iθθ}) and we have:

Ug == (
1 0
0 e−iθ

) = ∣0⟩⟨0∣ + e−iθ ∣1⟩⟨1∣ (9.72)

such that Π0 = ∣0⟩⟨0∣, Π1 = ∣1⟩⟨1∣ and I1, I2 = 1

⟨ρ⟩G = ⊕
x=0,1

Tr[ρΠx] = ∑
x=0,1

Tr[ρΠx]Πx = ⟨0∣ρ∣0⟩∣0⟩⟨0∣ + ⟨1∣ρ∣1⟩∣1⟩⟨1∣ . (9.73)

Thus as we expected (inline with Problem Sheet 5) this averaging kills off all coherence and
projects onto the Z axis. For a visualisation of the effect of twirling on the Bloch sphere see
Fig. 9.6.

Exercise: What happens if you twirl a qubit state over the group SU(2) ⊗ SU(2)?
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rr′ < r′ >

x

y

z

r

r′′

x

y

z

< r′′ >

Figure 9.6: Left: We want the average of state ρ = 1
2(1 + r ⋅ σ) by Rz(θ) where r = (rx, ry, rz).

If we rotate ρ around the z-axis it goes to ρ′ = 1
2(1 + r′ ⋅ σ) where r′ = (r′x, r′y, rz). So if we

calculate the average it would be a density matrix with a vector in the Block sphere equal to
(0,0, rz) which is along the z-axis. Right: And when we have all Pauli matrices, it will be an
arbitrary rotation. So the state ρ = 1

2(1 + r ⋅ σ) rotates and goes to ρ′′ = 1
2(1 + r′′ ⋅ σ) where

r′′ = (r′′x , r′′y , r′′z ) is another arbitrary vector. Then the average is a density matrix with vector
zero in the Block sphere.

9.8.3 Petit Orthogonality Theorem.

We just saw that the grand orthogonality theorem is effectively an orthogonality relation between
"vectors of matrices" ([R(g)]ij)g∈G. We will now consider the petite orthogonality theorem, its
simpler corollary, which is an orthogonality relation between vectors composed of their traces
(χR(g))g∈G where we have defined

χR(g) ∶= Tr[R(g)] . (9.74)

We further note that Tr(R(x)†) = χ∗R(x).

Theorem 9.8.3 (Classes & Traces). In a representation R, all the elements which are in the
same conjugacy class have the same trace.

Demo. If there exists u such that x = u−1yu then

Tr(R(x)) = Tr(R(u−1yu)) = Tr(R(u−1)R(y)R(u)) = Tr(R(u)R(u−1)R(y)) = Tr(R(e)R(y))
= Tr(R(y)) (9.75)

From the Grand Orthogonality Theorem, we find

∑
jk

∑
g∈G

na
N
[Ra(g)†]jj [Rb(g)]kk = ∑

g∈G

na
N
χ∗a(g)χb(g) = δab∑

jk

δjkδjk = naδab (9.76)

where in the final line we use the fact that ∑nA

j,k=1 δj,kδjk = ∑
nA

j,k=1 δjk = na. Thus we see that the
vectors of traces of two irreps are orthogonal. Or more formally:
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Figure 9.7: Motivational cat. Here’s also a link to one of my favourite cat videos. It’s an old
one, and a slow burner (from an era pre-tiktok when videos could be more than 60 seconds).

Theorem 9.8.4 (Petit Orthogonality Theorem). Let Ra and Rb denote two non-equivalent
unitary irreducible representations of a finite group of order N , we have

∑
g∈G

χ∗a(g)χb(g) = Nδa,b (9.77)

For example, in the case of C3v we have three equivalent classes: {e},{c+, c−}, and the three
mirrors {σ,σ′, σ′′}. We see in Eq. (9.61) that χ(e) = 2, χ(c+) = χ(c−) = −1 and χ(σ) = χ(σ′) =
χ(σ′′) = 0. Thus, in line with Eq. (9.78), we have 1 × 22 + 2 × (−1)2 + 3 × 02 = 6.

As elements in a conjugacy class have the same trace, one can equivalently write the petit
orthogonality theorem by summing over the number of the conjugacy classes, i.e. we have

Nc

∑
µ=1

nµχ
∗
a(Cµ)χb(Cµ) = Nδa,b (9.78)

where nµ denotes the number of elements in class µ and Nc is the total number of conjugacy
classes.

We stress that we can interpret this theorem as an orthogonality relation of Nr (the number of
representations) vectors in a space of dimension Nc (the number of equivalent classes). Indeed,
for any representation a we can define the (Nc-dimensional) vectors:

[∣a⟩]µ =
√
nµ

N
χa(Cµ) for µ = 1, ...,Nc . (9.79)

There are Nr of these vectors for the Nr different irreps. It follows from Eq. (9.78) that this set
of Nr vectors are all orthogonal. Since the maximum numbers of orthogonal vectors is Nc, we
have

Nr ≤ Nc . (9.80)

That is, the number of representation is smaller or equal to the number of conjugation classes.
This is the first step towards proving Lemma 9.7.2 (i.e. that the number of irreps is equal
to the number of conjugacy classes) which we stated without proof earlier. In turns out this
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bound is tight (this is another consequence of the Grand Orthogonality Theorem - for a proof
see Vincenzo Savona’s notes on page 37) leading to Lemma 9.7.2.

Again, that was quite lot of quite technical material. And we’ve got more to come. So here’s a
panda (Fig 9.8). And if fluffy animals aren’t your thing here’s a clip of two guys trying to kayak
down a melting ski slope.

9.9 Characters

We saw above that the traces of a representation of a group are useful. The set of traces associ-
ated with a representation are known as the character of the representation. Characters provide
an elegant and systematic approach to analyzing and categorizing irreducible representations,
as well as ascertaining the reducibility of a specific representation.

Definition 9.9.1 (Character). The set of all traces {χR(g)} is called the character of the
representation R.

As we saw above, two equivalent representations have the same character. Indeed if R2(g) =
SR1(g)S−1, then using the cyclic property of the trace we have Tr[R2(g)] = Tr[SR1(g)S−1] =
Tr[R1(g)]. In fact this is a sufficient condition as well:

Theorem 9.9.2 (Characters of Irreps). Two irreps are equivalent if and only if they have the
same character.

Demo. We already proved that the condition is necessary. To prove it is sufficient we reason by
contradiction. Assume two irreps R1 and R2 are not equivalent but have the same character.
Then using the petit Orthogonality theorem, we find that the sum of (modulus of) trace squared
should be zero, which is impossible as the norm squared is positive and non-zero (the identity
conjugacy class has trace 1).

Or, turning it around, different (non-equivalent) irreps have different characters.

Using this approach, we can now compute degeneracy numbers for representations, that is
compute how many copies of an irrep a given reducible representation contains. We first write:

R(g) = R1,1(g) ⊕R1,2(g)...⊕R1,b1(g) ⊕R2,1(g) ⊕R2,2(g)...⊕R2,b2(g)... = ⊕a,xRa,x(g) (9.81)

Figure 9.8: Motivational Panda. Even if you’re struggling a little to follow by this point
you’re still doing better than this panda. (God knows how these animals survive in the wild).
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where x = 1, ..., ba with ba denoting the degeneracy number. The question is how to find ba?
Using the characters of each irreps, we know that:

χR(g) = Tr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜
⎝

R1,1(g) 0 0 0 . . .
0 ... 0 0 . . .
0 0 R1,b1(g) 0 . . .
0 0 0 R2,1(g) . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ∑
a

baTr[Ra(g)] = ∑
a

baχa(g) . (9.82)

As the trace of all representations within the same conjugacy class are the same we can equiva-
lently write

χR(Cµ) = ∑
a

baχa(Cµ) . (9.83)

We can combine this expression with the petite orthogonal theorem to find an expression for ba.
To do so we multiply by nµχ

∗
b (Cµ) , where nµ is the number of element in class Cµ, and sum

over classes
Nc

∑
µ=1

nµχ
∗
b (Cµ)χR(Cµ) =

Nc

∑
µ=1

nµ∑
a

baχ
∗
b (Cµ)χa(Cµ) (9.84)

= ∑
a

ba
Nc

∑
µ=1

nµχ
∗
b (Cµ)χa(Cµ) = ∑

a

baNδa,b = Nbb (9.85)

so that
ba =

1
N

Nc

∑
µ=1

nµχ
∗
a(Cµ)χR(Cµ) =

1
N

Nc

∑
µ=1

nµχ
∗
a(Cµ)χR(Cµ) . (9.86)

We thus now have a formula for each number of irreps contained in a given representation:

Theorem 9.9.3 (Computing Degeneracy). Assume a decomposition in irreps as

R(g) = ⊕a,xRa,x(g) (9.87)

for x = 1, ..., ba. Then we have

ba =
1
N
∑
µ

nµχ
∗
a(Cµ)χR(Cµ) (9.88)

Remember this formula! It will be very useful in the problem sheets this week.

Another interesting consequence of the petite orthogonal theorem is the following one:

Theorem 9.9.4 (Sufficient condition for irreps). A necessary and sufficient condition for a
representation R to be an irrep is that

Nc

∑
µ=1

nµ∣χ(Cµ)∣2 = N (9.89)

Demo. Using Eq.(9.83) and the petit orthogonality theorem (Eq.(9.78)), we find that

Nc

∑
µ=1

nµ∣χ(Cµ)∣2 = ∑
i,j

bibj
Nc

∑
µ=1

nµχi(Cµ)∗χj(Cµ) = N∑
i,j

bibjδij = N∑
i

b2
i (9.90)

Being irreducible means having only one of the bi=1, which proves the theorem.
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For a finite group, it is easy to find the characters listed in table in the literature (google is your
friend!), listed as follows:

irrep/ class C1(e) C2 C3 C4 C5
R1 1 1 1 1 1
R2 d2 χ2(C2) χ2(C3) χ2(C4) χ2(C5)
R3 d3 χ3(C2) χ3(C3) χ3(C4) χ3(C5)
R4 d4 χ4(C2) χ4(C3) χ4(C4) χ4(C5)
R5 d5 χ5(C2) χ5(C3) χ5(C4) χ5(C5)

9.9.1 Example with C3v.

Ok we now finally have the tools to put everything together and show how orthogonality rela-
tions can be used to identify irreps.

Let us again consider the C3v group, i.e. symmetry of the triangle. We first recall that it is a non-
Abelian group of order 6. The conjugacy classes are Ce = {e},C1 = {c+, c−} and C2 = {σ,σ′, σ′′}
and so, as we saw before, from Lemma (9.7.2) there can be only 3 irreps.

We saw the 2D irrep in Eq. (9.61):

R(e) = (1 0
0 1)

R(c+) =
⎛
⎝
−1

2 −
√

3
2√

3
2 −1

2

⎞
⎠
, R(c−) =

⎛
⎝
−1

2

√
3

2
−
√

3
2 −1

2

⎞
⎠

R(σ) = (−1 0
0 1) , R(σ

′) =
⎛
⎝

1
2

√
3

2√
3

2 −1
2

⎞
⎠
, R(σ′′) =

⎛
⎝

1
2 −

√
3

2
−
√

3
2 −1

2

⎞
⎠

(9.91)

There we simply claimed that this was an irrep. Now we can use Theorem 9.9.4 to check.
Namely we have,

Nc

∑
µ=1

nµ∣χ(Cµ)∣2 = 1 × 22 + 2 × (−1)2 + 3 × 0 = 6 = N . (9.92)

What are the other irreps? We can of course have the trivial irrep where every group element
is represented by a scalar equal to one. The trivial 1D irrep:

R(e) = 1,R(c+) = 1,R(c−) = 1,R(σ) = 1,R(σ′) = 1,R(σ′′) = 1 (9.93)

(This is indeed an irreducible representation as 1 + 2 × 1 + 3 × 1 = 6 in line with Theorem 9.9.4).

Now to identify the missing irrep. From Burnside’s Lemma we know that it has to be 1D
(i.e, 12 + 22 + l2 = 6 implies l = 1). From the petit orthogonality theorem we know that the
characters of this final representation must be orthogonal. Thus denote the characters of the
missing representation as (χe, χc, χc, χσ, χσ, χσ) we have (1,1,1,1,1,1).(χe, χc, χc, χσ, χσ, χσ) =
χe+2χc+3χσ = 0 and (2,−1,−1,0,0,0).(χe, χc, χc, χσ, χσ, χσ) = 2χe−2χc = 0. Thus we have χe =
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